hansdegoede: me (Default)
For the hw-enablement for Bay- and Cherry-Trail devices which I do as a side project, sometimes it is useful to play with the Android which comes pre-installed on some of these devices.

Sometimes the Android-X86 boot-loader (kerneflinger) is locked and the standard "Developer-Options" -> "Enable OEM Unlock" -> "Run 'fastboot oem unlock'" sequence does not work (e.g. I got the unlock yes/no dialog, and could move between yes and no, but I could not actually confirm the choice).

Luckily there is an alternative, kernelflinger checks a "OEMLock" EFI variable to see if the device is locked or not. Like with some of my previous adventures changing hidden BIOS settings, this EFI variable is hidden from the OS as soon as the OS calls ExitBootServices, but we can use the same modified grub to change this EFI variable. After booting from an USB stick with the relevant grub binary installed as "EFI/BOOT/BOOTX64.EFI" or "BOOTIA32.EFI", entering the
following command on the grub cmdline will unlock the bootloader:

setup_var_cv OEMLock 0 1 1

Disabling dm-verity support is pretty easy on these devices because they can just boot a regular Linux distro from an USB drive. Note booting a regular Linux distro may cause the Android "system" partition to get auto-mounted after which dm-verity checks will fail! Once we have a regular Linux distro running step 1 is to find out which partition is the android_boot partition to do this as root run:

blkid /dev/mmcblk?p#

Replacing the ? for the mmcblk number for the internal eMMC and then for # is 1 to n, until one of the partitions is reported as having 'PARTLABEL="android_boot"', usually "mmcblk?p3" is the one you want, so you could try that first.

Now make an image of the partition by running e.g.:

dd if=/dev/mmcblk1p3" of=android_boot.img

And then copy the "android_boot.img" file to another computer. On this computer extract the file and then the initrd like this:

abootimg -x android_boot.img
mkdir initrd
cd initrd
zcat ../initrd.img | cpio -i


Now edit the fstab file and remove "verify" from the line for the system partition. after this update android_boot.img like this:

find . | cpio -o -H newc -R 0.0 | gzip -9 > ../initrd.img
cd ..
abootimg -u android_boot.img -r initrd.img


The easiest way to test the new image is using fastboot, boot the tablet into Android and connect it to the PC, then run:

adb reboot bootloader
fastboot boot android_boot.img


And then from an "adb shell" do "cat /fstab" verify that the "verify" option is gone now. After this you can (optionally) dd the new android_boot.img back to the android_boot partition to make the change permanent.

Note if Android is not booting you can force the bootloader to enter fastboot mode on the next boot by downloading this file and then under regular Linux running the following command as root:

cat LoaderEntryOneShot > /sys/firmware/efi/efivars/LoaderEntryOneShot-4a67b082-0a4c-41cf-b6c7-440b29bb8c4f
hansdegoede: me (Default)
This all started with a Mele PCG09 before testing Linux on this I took a quick look under Windows and the device-manager there showed an exclamation mark next to a Realtek 8723BS bluetooth device, so BT did not work. Under Linux I quickly found out why, the device actually uses a Broadcom Wifi/BT chipset attached over SDIO/an UART for the Wifi resp. BT parts. The UART connected BT part was described in the ACPI tables with a HID (Hardware-ID) of "OBDA8723", not good.

Now I could have easily fixed this with an extra initrd with DSDT-overrride but that did not feel right. There was an option in the BIOS which actually controls what HID gets advertised for the Wifi/BT named "WIFI" which was set to "RTL8723" which obviously is wrong, but that option was grayed out. So instead of going for the DSDT-override I really want to be able to change that BIOS option and set it to the right value. Some duckduckgo-ing found this blogpost on changing locked BIOS settings.

The flashrom packaged in Fedora dumped the BIOS in one go and after build UEFITool and ifrextract from source from their git repos I could extract the interface description for the BIOS Setup menus without issues (as described in the blogpost). Here is the interesting part of the IFR for changing the Wifi/BT model:


0xC521 One Of: WIFI, VarStoreInfo (VarOffset/VarName): 0x110, VarStore: 0x1, QuestionId: 0x1AB, Size: 1, Min: 0x0, Max 0x2, Step: 0x0 {05 91 53 03 54 03 AB 01 01 00 10 01 10 10 00 02 00}
0xC532 One Of Option: RTL8723, Value (8 bit): 0x1 (default) {09 07 55 03 10 00 01}
0xC539 One Of Option: AP6330, Value (8 bit): 0x2 {09 07 56 03 00 00 02}
0xC540 One Of Option: Disabled, Value (8 bit): 0x0 {09 07 01 04 00 00 00}
0xC547 End One Of {29 02}



So to fix the broken BT I need to change the byte at offset 0x110 in the "Setup" EFI variable which contains the BIOS settings from 0x01 to 0x02. Easy, one problem though, the "dd on /sys/firmware/efi/efivars/Setup-..." method described in the blogpost does not work on most devices. Most devices protect the BIOS settings from being modified this way by having 2 Setup-${GUID} EFI variables (with different GUIDs), hiding the real one leaving a fake one which is only a couple of bytes large.

But the BIOS Setup-menu itself is just another EFI executable, so how can this access the real Setup variable ? The trick is that the hiding happens when the OS calls exitbootservices to tell EFI it is ready to take over control of the machine. This means that under Linux the real Setup EFI variable has been hidden early on during Linux boot, but when grub is running it is still available! And there is a patch adding a new setup_var command to grub, which allows changing BIOS settings from within grub.

The original setup_var command picks the first Setup EFI variable it finds, but as mentioned already in most cases there are 2, so later an improved setup_var_3 command was added which instead skips Setup EFI variables which are too small (as the fake ones are only a few bytes). After building an EFI version of grub with the setup_var* commands added it is just a matter of booting into a grub commandline and then running "setup_var_3 0x110 2" and from then on the BIOS shows the WIFI type as being AP6330 and the ACPI tables will now report "BCM2E67" as HID for the BT and just like that the bluetooth issue has been fixed.

Read more... )
hansdegoede: me (Default)
As you may know I've been doing a lot of hw-enablement work on Bay- and Cherry-Trail tablets as a side-project for the last couple of years.

Some of these tablets have one interesting feature intended to "flash" Android on them. When turned on with both the volume-up and the volume-down buttons pressed at the same time they enter something called DNX mode, which it will then also print to the LCD panel, this is really just a variant of the android fastboot protocol built into the BIOS. Quite a few models support this, although on Bay Trail it sometimes seems to be supported (it gets shown on the screen) but it does not work since many models which only shipped with Windows lack the external device/gadget-mode phy which the Bay Trail SoC needs to be able to work in device/gadget mode (on Cherry Trail the gadget phy has been integrated into the SoC).

So on to the topic of this blog-post, I recently used DNX mode to unbrick a tablet which was dead due to the BIOS settings get corrupted in a way where it would not boot and it was also impossible to enter the BIOS setup. After some duckduckgo-ing I found a thread about how in DNX mode you can upload a replacement for the efilinux.efi bootloader normally used for "fastboot boot" and how you can use this to upload a binary to flash the BIOS. I did not have a BIOS image of this tablet, so that approach did not work for me. But it did point me in the direction of a different, safer (no BIOS flashing involved) solution to unbrick the tablet.

If you run the following 2 commands on a PC with a Bay- or Cherry-Trail connected in DNX mode:

fastboot flash osloader some-efi-binary.efi
fastboot boot some-android-boot.img

Then the tablet will execute the some-efi-binary.efi. At first I tried getting an EFI shell this way, but this failed because the EFI binary gets passed some arguments about where in RAM it can find the some-android-boot.img. Then I tried booting a grubx64.efi file and that result in a grub commandline. But I had not way to interact with it and replacing the USB connection to the PC with a OTG / USB-host cable with a keyboard attached to it did not result in working input.

So my next step was to build a new grubx64.efi with "-c grub.cfg" added to the commandline for the final grub2-mkimage step, embedding a grub.cfg with a single line in there: "fwsetup". This will cause the tablet to reboot into its BIOS setup menu. Note on some tablets you still will not have keyboard input if you just let the tablet sit there while it is rebooting. But during the reboot there is enough time to swap the USB cable for an OTG adapter with a keyboard attached before the reboot completes and then you will have working keyboard input. At this point you can select "load setup defaults" and then "save and exit" and voila the tablet works again.

For your convenience I've uploaded a grubia32.efi and a grubx64.efi with the necessary "fwsetup" grub.cfg here. This is build from this branch at this commit (this was just a random branch which I had checked out while working on this).

Note the image used for the "fastboot boot some-android-boot.img" command does not matter much, but it must be a valid android boot.img format file otherwise fastboot will refuse to try to boot it.

Profile

hansdegoede: me (Default)
Hans de Goede

July 2025

S M T W T F S
  123 45
6789101112
13141516171819
20212223242526
2728293031  

Syndicate

RSS Atom

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Jul. 9th, 2025 09:33 am
Powered by Dreamwidth Studios